Components of the gradient vector

- start with function $f : \mathbb{R}^2 \to \mathbb{R}$ and point *P* in the domain where, in a zoomed-in view, the level curve through *P* and nearby level curves are parallel lines
- define *gradient vector* $\vec{\nabla} f$ as vector that
 - points in direction of greatest rate of change (so perpendicular to level curve through *P*)
 - has magnitude $\|\vec{\nabla}f\|$ equal to that greatest rate of change
- introduce cartestian coordinates to have P(x, y)
- consider infinitesimal displacement $d\vec{r} = dx \hat{i} + dy \hat{j}$ consisting of displacements dx and dy in the *x* and *y* directions, respectively
- for the displacement $d\vec{r}$, there is a corresponding infinitesimal change df in the function values

• relate *df* to *dx* and *dy* using partial derivatives as

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

• note that each term on the right side is a contribution to the change *df* that has the form

(rate of change in *f* with respect to change in coordinate)×(size of change in coordinate)

• factor this using the dot product as

$$df = \left(\frac{\partial f}{\partial x}\,\hat{\imath} + \frac{\partial f}{\partial y}\,\hat{\jmath}\right) \cdot (dx\,\hat{\imath} + dy\,\hat{\jmath})$$

• in this product of two vectors, the first vector has information about rate of change and the second vector has information about displacement

• for convenience, name the first vector in the product Bob so have

$$\overrightarrow{\text{Bob}} = \frac{\partial f}{\partial x}\,\hat{\imath} + \frac{\partial f}{\partial y}\,\hat{\jmath}$$

and can write

$$df = \overrightarrow{\text{Bob}} \cdot d\vec{r} \tag{1}$$

Bob

dr

- now argue that \overrightarrow{Bob} is equal to the gradient vector $\vec{\nabla} f$
- start by writing the geometric expression for the dot product in (1) to get

$$df = \|\overrightarrow{\operatorname{Bob}}\| \, \|d\vec{r}\| \, \cos\theta = \|\overrightarrow{\operatorname{Bob}}\| \, ds \, \cos\theta$$

where θ is the angle between $\overrightarrow{\text{Bob}}$ and $d\vec{r}$ and $ds = ||d\vec{r}||$

- the rate of change in *f* for a displacement $d\vec{r}$ is the ratio of df to ds
- dividing through by ds in the previous relation gives

rate of change in *f* for displacement
$$d\vec{r}$$
: $\frac{df}{ds} = \|\overrightarrow{\text{Bob}}\| \cos\theta$ (2)

1 0

- now consider all displacements $d\vec{r}$ having the same magnitude $ds = ||d\vec{r}||$ while allowing the direction to vary so the only variable in (2) is θ
- since $\cos \theta$ has values between -1 and 1, the greatest rate of change is for $\cos \theta = 1$ corresponding to $\theta = 0$
- so, the greatest rate of change is for a displacement in the direction of Bob with magnitude

$$\left. \frac{df}{ds} \right|_{\theta=0} = \|\overrightarrow{\text{Bob}}\| \cos 0 = \|\overrightarrow{\text{Bob}}\|(1) = \|\overrightarrow{\text{Bob}}\|$$

- in other words, \overrightarrow{Bob} is a vector that
 - points in direction of greatest rate of change
 - has magnitude equal to that greatest rate of change
- thus, \overrightarrow{Bob} is equal to the gradient vector $\vec{\nabla} f$
- recalling the definition of \overrightarrow{Bob} , we have

$$\vec{\nabla}f = \frac{\partial f}{\partial x}\,\hat{\imath} + \frac{\partial f}{\partial y}\,\hat{\jmath}$$

- this result gives us a way to compute the components of a gradient vector V

 f if we have a formula for *f* in terms of cartesian coordinates
- knowing that $\overrightarrow{Bob} = \overrightarrow{\nabla} f$, can relate df to $\overrightarrow{\nabla} f$ by rewriting (1) as

$$df = \vec{\nabla} f \cdot d\vec{r}$$